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Starting from a microscopic model of interacting elastic rods, we derive an effective dissipative dynamics
for the translational motion, where the internal degrees of freedom, i.e., the vibrations of the rods, are repre-
sented by a thermalized bath. Focusing on two-particle collisions, we calculate the coefficient of restitution
e as a function of the relative length of the colliding rods, the center of mass velocity, and the degree of
excitation of the internal vibrations. In general,e is a stochastic quantity; its distribution is interpreted as the
transition probability for the Markovian jump process, which describes the loss of translational energy in
successive two-particle collisions.@S1063-651X~96!12111-5#

PACS number~s!: 05.20.2y, 05.40.1j, 46.30.My

I. INTRODUCTION

Inelastic collisions of particles with internal degrees of
freedom are abundant in nature. Examples are molecules
with vibrational and rotational states or elastic bodies, which
allow for elastic and plastic deformations. In all these pro-
cesses energy of translation is lost to internal degrees of free-
dom. For oscillations, like elastic waves or molecular vibra-
tions, one would expect that the transfer of energy is at least
partially reversible, whereas the energy is irreversibly lost
for the translational motion, if defects are generated. There is
a wide range of particle sizes involved: a few atoms in a
molecule, clusters of about 106 molecules in a soot or dust
particle, up to truly macroscopic grains, like sand or gravel.

In recent years inelastic collisions have found renewed
interest in the context of granular materials. Numerical and
theoretical approaches to the dynamics of granular materials
are usually based on phenomenological equations of motion
for the center of mass velocities of the grains. This phenom-
enological ansatz has revealed surprisingly rich behavior of
granular material with many fascinating features, such as
surface fluidization, granular condensation, size aggregation,
arching–to mention just a few. Despite a lot of activity in
this field, very little effort has been put into a systematic
derivation of the phenomenological equations from a micro-
scopic theory. Instead a variety of phenomenological models
is used, each with its particular strength and its limitations.
For example, molecular-dynamics simulations@1# have the
difficulty that ad hocassumptions about microscopic inter-
action laws have to be made. An inadequate choice of the
interaction parameters can lead@2# to spurious effects in the
simulations. Other simulation techniques adopt the concept
of the coefficient of restitution that determines the energy
loss during collisions of granular particles. Event-driven
~ED! simulations@3–6# have shown that model systems with
a fixed coefficient of restitution evolve into clustered states
where a hydrodynamic description ceases to be correct: Fun-
damental assumptions of hydrodynamics concerning the va-
lidity of molecular chaos and local equilibrium are violated
@7#. The frequency of collisions diverges, so that the algo-
rithm breaks down.

In this paper we aim at amicroscopic derivationof the
effective dissipative dynamics of the center-of-mass veloci-

ties of granular particles. A summary of our results has pre-
viously been published in Ref.@8#. We emphasize that our
approach focuses on granular materials in the ‘‘grain inertia’’
regime @9#, where the dynamics is dominated by inelastic
collisions. Typical examples are fluidized surfaces, rapid
granular flow, and the condensation of a granular gas.~We
mainly refer to the latter in the following.! At this stage we
have not incorporated frictional forces. Phenomena such as
size aggregation and arching, for which static and dynamic
friction become relevant~‘‘quasistatic’’ regime!, are there-
fore beyond the scope of the present analysis.

We start from a one-dimensional model of elastic rods.
Colliding rods interact via a short-range repulsive potential.
Upon collision, kinetic energy of translation is lost to the
internal vibrations. Equipartition among the vibrational
modes is found to be fast as compared to the relaxation of
translational motion. Hence for a discussion of the cooling
properties of the granular gas we model the internal oscilla-
tors by a bath temperatureTB and study in detail how energy
is transferred from the translational to the internal degrees of
freedom. We focus on the coefficient of restitution for inelas-
tic two-particle collisions, expressed in terms of the param-
eters of the microscopic model. The principal results are as
follows.

~1! In the deterministic limit (TB50) we find
e5min(g,1/g) with g the ratio of lengths of the two collid-
ing rods. This result is in agreement with the phenomeno-
logical wave theory. We calculate corrections due to the fi-
nite range of the potential. For a potential of small but finite
range the coefficient of restitution is found to depend on the
initial relative velocity, withe→1 as the velocity goes to
zero.

~2! In the general case, whenTBÞ0, the coefficient of
restitution is a stochastic quantity, whose distribution we cal-
culate numerically. Its variance depends on the ratio ofTB to
the energy of translation and on the length ratiog ~with the
fluctuations going to zero forg→1).

We use a Hamiltonian approach to describe the loss of
energy of translation by excitation of internal degrees of
freedom. Implicit in such a Hamiltonian model is, of course,
overall energy conservation. The final state after many colli-
sions is trivial: It is characterized by equipartition among all
degrees of freedom, so that the velocity of translation is typi-
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cally of O(1/Nmod), whereNmod denotes the number of in-
ternal degrees of freedom per particle. We focus here on the
cooling properties, i.e., the relaxation of a typical initial ve-
locity of translation of O(1) to its final value of
O(1/Nmod). One could possibly extend our approach to in-
clude dissipation of internal vibrations due to nonlinear in-
teractions or by transfer to still other degrees of freedom.
This would give rise to a decay of the internal excitations,
which in the simplest case we may assume to be character-
ized by a single time scaletdiss. As long as the duration of
collisions is small compared totdiss, the stochastic differen-
tial equation to be derived in Sec. IV should be valid. If
furthermore the frequency of collisionsncoll becomes very
large or even diverges~inelastic collapse! one ultimately en-
ters a regime such that 1/tdiss!ncoll . Then we would expect
the relaxation of internal vibrations to be irrelevant.

Our approach is conceptually related to work on a gener-
alized Langevin equation for a heavy particle, coupled to a
bath of oscillators@10–12#. Energy dissipation is modeled by
the excitation of oscillators in both cases. There are impor-
tant differences, however. To derive a Langevin equation
one usually assumes abilinear coupling between particle
coordinate and bath variables. Furthermore, the frequency
spectrum of the oscillators and the distribution of coupling
constants can be adjusted@11,12#, such that a linear damping
force emerges. In our model the frequency spectrum is de-
termined by the geometry of the particles. The coupling be-
tween center-of-mass coordinates and internal modes is dic-
tated by physical interactions: The interparticle potential
depends on the end-to-end distance between the rods and
couples translational to internal coordinates. Hence there is
no freedom in the choice of properties of the bath. The re-
sulting stochastic equation for the translational coordinate is
highly nonlinear and has complex correlations of the fluctu-
ating force.

II. MODEL

We consider a one-dimensional system ofN elastic rods
of homogeneous densityr. Each rod is characterized by its
lengthl i , its center of mass coordinateRi(t), and its internal
coordinatessiP@2 l i /2,l i /2# , such that in theundeformed
state the positionr i(si ,t) of a mass element is given by

r i~si ,t !5Ri~ t !1si . ~1!

The deformation of the rod is described by the displacement
field ui(si ,t), such that in thedeformedstate the position of
a mass element is

r i~si ,t !5Ri~ t !1si1ui~si ,t !. ~2!

We require that there be no uniform displacement,
*

2 l i /2
l i /2 ui(s,t)ds50, which is instead accounted for by a

translation of the center of mass. The elastic energy of a
deformed rod is treated in harmonic approximation

Hbath„$ui~s!%…5
1

2(i E
2 l i /2

l i /2

dsH ru̇i
21ES duids D 2J . ~3!

Here the elastic modulus is denoted byE, it determines the
sound velocity according toc25E/r. The displacement field

ui(si ,t) is expanded in normal modes with wave number
ki ,n5pn/ l i (n51,2, . . . ) andfrequencyv i ,n5cki ,n :

ui~si ,t !5A2(
n50

`

$~21!n11qi
~2n11!~ t !sin~ki , 2n11si !

1~21!nqi
~2n!~ t !cos~ki , 2nsi !%. ~4!

The amplitudes in this expansion are denoted byqi
(n)(t) and

the requirement of no uniform displacement implies
qi
(0)(t)50.
In one space dimension rods experience longitudinal col-

lisions only. We model these by a short-range repulsive po-
tential V( r̂ i j ) depending on the momentary end-to-end dis-
tance between the colliding rodsi and i11,

r̂ i11,i~ t !5Ri11,i~ t !1ui11S 2
l i11

2
,t D2ui S l i2 ,t D , ~5!

with

Ri11,i5Ri112Ri2
l i111 l i

2
. ~6!

One possibility is an exponential potential,V(r )5Be2ar ,
which includes the hard-core limit fora→`. The interaction
only depends on the displacement fields at the ends of the
rods and hence simplifies, if the expansion~4! is used. The
total Hamiltonian of our model is then given by

H5Hbath$pi
~n! ,qi

~n!%1Htr$Pi%1Hint$Ri ,qi
~n!%

5(
i51

N

(
n51

` H pi~n!2

2mi
1miv i ,n

2
qi

~n!2

2 J 1(
i51

N Pi
2

2mi

1 (
i51

N21

BexpH 2aSRi11,i

1A2(
n

@qi11
~n! 2~21!nqi

~n!# D J . ~7!

HerePi andpi
(n) denote the conjugate momenta for the cen-

ter of mass and the amplitude of vibration, respectively. The
constantB is arbitrary. It can be absorbed by rescaling time
t85tAB and frequenciesv85v/AB.

III. NUMERICAL RESULTS

In this paper we analyze in detail the predictions of our
model for two-particle interactions. We determine the
asymptotic states for an inelastic collision: the change in
relative velocity as a function of the degree of vibrational
excitation. In a planned subsequent paper we shall extend the
analysis to the entire many-body problem assuming that two-
particle collisions are the dominant interactions~which is a
reasonable approximation for a wide range of particle densi-
ties!.

We now consider two rods with reduced massm, that are
placed on a circular ring of circumferenceL. The ring has to
be sufficiently large,L@2/a, so that the rods are effectively
decoupled for the maximal relative distanceL/2. We focus
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on the cooling process, i.e., the transfer of translational en-
ergy to the internal vibrations. Hence we perform the follow-
ing experiment repeatedly: The system is started with a cold
oscillator bath,qi

(n)(t50)5pi
(n)(t50)50. The two rods are

placed maximally far apart,R2,15L/2 and given relative ve-
locity Ṙ2,152V(1) . Subsequently Hamilton’s equations of
motion are solved with a Bulirsch Stoer@13# algorithm. The
system undergoes a neverending cascade of inelastic colli-
sions, thereby transferring the energy from the translational
to the vibrational modes. Of particular interest is the hard-
core limit a→`. In the following, time is counted as the
number of collisions that have occurred, and hence is not
simply related to real time.

A typical realization of the decay of the translational en-
ergyEtr is shown in Fig. 1. It is seen to relax to a stationary
state, which is characterized by equipartition among all
(2Nmod11) modes. In the stationary state we observe fluc-
tuations ofEtr around the mean

Etr
stat5^Etr&5

mV~1!
2

2~2Nmod11!
, ~8!

which goes to zero asNmod→`. The energy of the whole
system,Etot5Etr1Ebath is conserved@14#, so that we ob-
serve a microcanonical equilibrium state and the fluctuations
in Etr can be interpreted as canonical fluctuations of a sub-
system, coupled to the bath of oscillators. Hence the fluctua-
tions inEtr are determined by the Boltzmann distribution

pstat~Etr !5
1

Etr
statexpS 2

Etr

Etr
statD . ~9!

The relaxation time ofEtr is essentially independent of
Nmod, but does depend ong5 l 1 / l 2, the ratio of the two
lengths. Forg50.6173 it takes about 60 collisions forEtr to
relax to its stationary value.

The distribution ofEbath over the vibrational modes is
shown in the inset of Fig. 1. Equipartition implies that the
relative modal energieswi

(n)5Ei
(n)/Ebath are, on the average,

equal to 1/2Nmod. It is well fulfilled, providedg is suffi-
ciently irrational. An essential point is to understand the time
scale, which is relevant for the equipartition of the internal
modes. A measure for the degree of equipartition, which has
been achieved after a timet, is the generalized entropy of
information @15,16#

h52(
i51

2

(
n51

Nmod

wi
~n!lnwi

~n! . ~10!

By definition,h50 at t50, whereash reaches its maximum
hmax5 ln2Nmod iff wi

(n)51/2Nmod for all i andn. To compare
systems of different size, it is more convenient to introduce
the normalized spectral entropy:h512h/hmax. If all
@wi

(n)# are random variables, identically distributed accord-
ing to Boltzmann statistics, thenh is expected to fluctuate
around a mean@17,18#

^h&5
0.423

ln~2Nmod!
. ~11!

In Fig. 2 we show the decay ofh for severalNmod. It takes
only approximately five collisions to establish modal equi-
partition and this time scale does not depend significantly on
the number of modes.

Based on these results, we distinguish between three time
regimes:

~1! On the shortest time scales equipartition is achieved
among the vibrational states.

~2! For intermediate time scales the translational energy
decays to its stationary value in the presence of a bath of
thermalized oscillators.

FIG. 1. Time evolution of the relative kinetic energy for a two-
particle system with length ratiog5 l 1 / l 250.6173, aV(1)l /c
54000, andNmodes575. The dashed line is the equilibrium value
resulting from equipartition of energy. The inset displays a cutout
from the corresponding spectrum of modal energies: After a tran-
sient time of 500 collisions the relative energieswi

(n) have been
averaged over another 4000 collisions. Gray and black bars corre-
spond to particles 1 and 2, respectively.

FIG. 2. Time dependence of the spectral entropyh for different
numbers of modes. As in Fig. 1,g50.6173 andaV(1)l /c54000.
The dashed line corresponds to the equilibrium value Eq.~11! for
Nmod575.
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~3! For the longest time scales a stationary state is
reached. This state is characterized by complete equipartition
and hence a very small valueO(1/Nmod) of the translational
velocity.

It is the intermediatetime regime that we are interested
in. For this time window we can hope to achieve a simplified
description in terms of the center-of-mass coordinate only,
modeling the internal oscillators as a thermalized bath. Such
a coarse grained model is particularly useful if the stochastic
forces of the bath are correlated over time scales much
shorter than the typical time scale for translational motion. In
that case, a Markov approximation for the stochastic dynam-
ics of the particle is justified. The typical time scale for trans-
lational motion is the duration of a collisiontcoll , which will
be shown to be given bytcoll;2l i /c. If the states of the bath
before and after collision were correlated, one would expect
to see correlations among consecutive collisions on the
coarse grained level. To analyze these correlations we con-
sider the statistics of the coefficient of restitutione ( j ) , de-
fined for thej th collision as

e~ j !5
V~ j11!

V~ j !
. ~12!

HereV( j ) is the absolute value of the center-of-mass velocity
before thej th collision. The correlation function ofe in the
stationary state

Ce~k!5
1

Nmax2k2 j 0
(
j5 j 0

Nmax

~e~ j !2^e&!~e~ j1k!2^e&!

~13!

has been determined as an average over many collisions. A
typical realization is plotted in Fig. 3. One observes a rapid
decrease ofCe(k); even fork51 correlations are very small.
Apparently the nonlinear coupling in Eq.~7! is very effective
to destroy any correlations in the internal modes. We shall
come back to discuss the statistics ofe in more detail, once
we have shown thate is a deterministic quantity for a cold

bath of oscillators~Sec. V! and that its fluctuations are de-
termined by the strength of the internal vibrations~Sec. VI!.

IV. EFFECTIVE STOCHASTIC EQUATION

For a single collision of two particles one can integrate
out the vibrational degrees of freedom and thereby derive an
exact equation of motion for the relative velocity. For that
purpose it is more convenient to consider a linear arrange-
ment, so that the two particles move apart after collision. Our
starting points are the equations of motion

mR̈2,15aB expH 2aSR2,11A2(
n

~q1
~n!1q2

~n!! D J ,
~14!

q̈i
~n!52v i ,n

2 qi
~n!1

A2m

mi
R̈2,1,

where we have made use of a trivial canonical transforma-
tion (qi

(n) ,pi
(n))↔„(21)n11qi

(n) ,(21)n11pi
(n)
…. The equa-

tions have to be supplemented with initial conditions. We
choose R2,1(0)5R0@1/a and Ṙ2,1(0)52V and leave
qi
(n)(0) andpi

(n)(0) unspecified for the moment.
There are two important length scales in our model: The

lengths of the rods, which we take to be different (l 1< l 2)
but comparable, and the range of the potential 1/a. For the
first it is convenient to introduce an effective length scale
l52l 1l 2 /( l 11 l 2) and the ratiog5 l 1 / l 2. We are interested
in the hard-core limita→`, so thata l@1. The effective
length of the rodsl sets the time scalet05 l /c for the dura-
tion of an inelastic collision~see Sec.V!. In the following we
shall work with dimensionless timet5t/t0. In these units it
takes a time G15(2l 1/c)(c/ l )511g @G25(2l 2 /c)
3(c/ l )5111/g# for a signal to travel back and forth on rod
1 ~2!. Another time scale ist151/(aV), which is the colli-
sion time for the corresponding elastic collision. The latter
has to go to zero in the hard-core limit, so that we shall
always assumek5t0 /t15aVl/c@1.

The equation of motion for the oscillators can be inte-
grated with help of the elastic Green function~see Appendix
A!. The resulting equation for the velocity increase

W~t!5a
l

c
@Ṙ2,1~ t !2Ṙ2,1~0!# ~15!

is given by

d

dt
W~t!5expH kt2aR02W~t!

2(
i51

2

(
n51

`

W~t2nG i !1Q~t!J . ~16!

The exponential dependence of the acceleration is, of course,
due to the exponential potential, which we have chosen to
represent a hard-core potential. The memory terms
W(t2nG i) are present because the elastic vibrations do not
decay in the Hamiltonian model that we are using. Hence an
applied force@mR̈2,1 in Eq. ~14!# is felt forever. The function

FIG. 3. The correlation function of the coefficient of restitution
Ce(k) in the stationary state for the same system as in Fig. 1. The
data were obtained by averaging over 4000 collisions. Apparently,
successive collision events are only weakly correlated.
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Q~t!5A2a(
n

(
i51

2 S qi~n!~0!cos~2ptn/G i !

1
pi

~n!~0!

miv i ,n
sin~2ptn/G i ! D ~17!

accounts for the contribution to the displacements that stems
from the initial excitation of the oscillator system. Note that
(d/dt)W(t50);0, i.e., the particles do not interact at
t50, because initially they are far apart,aR0@1.

In Sec. III we have seen that the oscillators quickly relax
to a thermalized state with equipartition among the oscilla-
tors. This result suggests that for the subsequent cooling pro-
cess we can model the internal degrees of freedom by a bath
of temperatureTB5Ebath /(2Nmod). Then $qi

(n)(0)% and
$pi

(n)(0)% are independent, canonically-distributed random
variables with

^qi
~n!~0!&5^pi

~n!~0!&5 0 ~18!

^„qi
~n!~0!…2&5^@pi

~n!~0!/~miv i ,n!#2&5TB /~miv i ,n
2 !.

Under these assumptionsQ(t) is a Gaussian random vari-
able with zero mean and covariance

CQ~t!5^Q~t8!Q~t81t!&

5s2H (
i51

2
1

2G i
S t2

G i

2
2G i (

n51

`

u~t2nG i !D 2
2

G1G2

24 J , ~19!

s25
a2l 2

mc2
TB5k2

TB
2Etr

.

Here Etr5(m/2)V2 is the initial translational energy. This
rather complex variance is due to the fact thatQ(t) is the
superposition of two random processes: The first~represent-
ing thermalized vibrations of rod 1! is periodic withG1 and
the second~representing thermalized vibrations of rod 2! is
periodic withG2. CQ(t) is a periodic function for rational
g and a quasiperiodic function for irrationalg. A typical
correlation is shown in Fig. 4. It consists of pieces of pa-
rabola, joined such that the function is continuous.

The coefficient of restitution is defined as

e5 lim
t→`

uṘ2,1~ t !/Ṙ2,1~0!u5 lim
t→`

W~t!/k21. ~20!

W(t) is expected to be ofO(k) and inspection of the cova-
rianceCQ(t) shows that the noiseQ(t) is of the same order
of magnitude.

V. DETERMINISTIC LIMIT

Some insight into the equation of motion can be gained
from the deterministic limitTB50. This implies that no vi-
brations are excited before collision and corresponds to the
initial condition in the numerical solution of Sec. III.~The
deterministic limit may also be relevant for a non-

Hamiltonian model with heavily damped vibrations, such
that between collisions the vibrational energy relaxes to
zero.!

The deterministic equation can be solved analytically in
the limit of a hard-core interaction (k→`). The solution is
nontrivial due to the memory terms: To construct the solu-
tion at time t requires knowledge ofW(t) at all previous
times. Starting att50, withW(t)50 for t<0, one solves
for W(t) in a small time interval, such that the memory
terms vanish. This solution is then fed into the memory terms
of the next time interval, etc. The details of the solution are
given in Appendix B. We neglect contributions, which are
exponentially small ink and find

W~t!5 lnS 11
exp@k~t2t f ree!#

k1exp@k~t222t f ree!#
D for g51

~21!

and

W~t!5 lnS 11ekG1lnF 11
1

k
exp@k~t2G12t f ree!#

11
1

k
exp@k~t2G22t f ree!#

G D
for 0.5<g,1. ~22!

Here t f ree5R0 /(Vt0) is the typical time the particles need
to collide, starting with initial separationR0 and initial ve-
locity 2V.

The coefficient of restitution follows from Eqs.~21,22!

e5H 1 for g51

g1
ln@k~G22G1!#

k
for 0.5<g,1.

~23!

In the hard-core limite is given byg5 l 1 / l 2, the ratio of the
lengths of the two rods. For rods of equal length there is no
translational energy dissipation at all. Our approximate solu-
tion for largek is actually remarkably good down tok'5.
The approximate analytical solution is compared toe, as

FIG. 4. The correlation functionCQ(t) of the noise process
Q(t) with length ratiog50.6173. For rationalg the function is
periodic, for irrationalg it is quasiperiodic.
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obtained from a numerical integration of the equation of mo-
tion, in Fig. 5. Deviations can be seen fork→0, where the
correcte approaches 1 and the approximate solution for large
k obviously fails.

It is only the parameterk that controls the solution and
hence the coefficient of restitution. For a perfect hard-core
one has to requirea l→` and hencek→`. If, on the other
hand the range of the potential 1/a and the length scale of
the rods are chosen such thata l is large but fixed, then
variations ink are due to variations inV. Hence for fixed
‘‘microscopic’’ parameters (a,l ,c), we interprete(k) as a
velocity-dependent coefficient of restitution. Presumably this
velocity dependence is not universal, in the sense that it de-
pends on the interparticle potential.

The time evolution ofW(t) is shown in Fig. 6 for two
values ofk. In the hard-core limit the relative velocity is
given by

V2,1~t!5H 2V, t<t0

2V1~t2t0!V for t0,t,t01G1

gV, t01G1<t.
~24!

The time of interaction is equal toG1, the time that an elastic
wave needs to travel back and forth on the shorter rod. The
fraction of kinetic energy that has been transferred to internal
vibrations is (12g2)Etr . It is distributed over the oscillator
modes according to

Ei
~n!

Etr
5

1

n2
2G i

p2 sin
2S np

G1

G i
D . ~25!

Hence all the energy lost for the translational motion is trans-
ferred to the longer rod, whereasE1

(n)50. One can easily
check that(nE2

(n)5(12g2)Etr , as required by energy con-
servation.

These results are in complete agreement with the wave
theory of impact@19#, which analyzes the collision problem
in terms of stress waves propagating through the rods. To our
knowledge, a derivation in the framework of classical me-
chanics ~with correction terms for finitek) has not been
given before.

VI. STOCHASTIC COEFFICIENT OF RESTITUTION

For TBÞ0 we have integrated Eq.~16! numerically for
various realizations of the noise process. The first step is to
generate random initial conditionsqi

(n)(0) andpi
(n)(0) with a

standard procedure. The Fourier series in Eq.~17! have to be
truncated after a finite number of terms (nmax;250 turns out
to be a reasonable compromise for computation time and
accuracy!. The initial separation of the centers of mass has to
be chosen sufficiently large compared to the noise,
aR0@A^Q2(0)& , so that initially the two particles move
freely. Subsequently the differential equation is integrated
with a Bulirsch Stoer routine.

Two typical trajectoriesW(t) are shown in Fig. 7. In the
hard-core limit (k5100) we observe a random sequence of
rapid changes ofW(t) due to the ongoing oscillations of the

FIG. 5. The coefficient of restitution as a function of the param-
eterk5aVl/c in the deterministic limit. Forg50.6, we compare
the approximate solution, Eq.~23!, with the results~triangles! of a
numerical integration of Eq.~16!.

FIG. 6. The velocity increaseW(t) in the deterministic limit.
The plot displays the approximate solution Eq.~22! for g50.6,
t f ree51, and two different values ofk. In the limit k→`, W(t) is
piecewise linear@cf. Eq. ~24!#.

FIG. 7. Two typical stochastic trajectories ofW(t) for
TB /Etr51 and two different values ofk. As in Fig. 6,g50.6 and
t f ree51.
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ends of the rods, while for a softer potential (k55) these
changes are smoothened. The first contact of the particles
may happen earlier~later! than t f ree , because the ends vi-
brate towards~away from! each other.

Analytically, some insight into the properties of Eq.~16!
can be gained in the limitk→`. In this case the equation
can be solved@20# formally by means of a saddle-point ap-
proximation, yielding

lim
k→`

W~t!

k
5max$0,f ~t!%,

f ~t!5maxt8P[0,t] H t82t f ree2(
i51

2

(
n51

`
W~t82nG i !

k

1
Q~t8!

k J . ~26!

Due to the memory terms this solution still requires a piece-
wise construction ofW(t), analogous to that performed in
Appendix B for the deterministic limit. Again, it is the
memory terms that end the collision process, since the re-
maining terms in the brackets are — on the average — in-
creasing with time. ForgÞ1 the duration of the collision
tcoll and the asymptotic valueW(t→`) are random vari-
ables, whose distribution we have not been able to calculate
analytically.

For g51, Q(t) is periodic with periodG52 and the
situation is totally different: Forevery realization ofQ we
find from Eqs.~20! and~26! thate51 andtcoll5G, which is
precisely the deterministic result. In other words, the asymp-
totic dynamics of two colliding rods ofequallength does not
depend on whether initially internal vibrations are excited or
not.

To calculate the statistics of the coefficient of restitution
in the casegÞ1, we have determined the asymptotics of
W(t) numerically and averaged over several thousand real-
izations of the noise. Generally, the distribution ofe depends
on TB /Etr , g, and k. It turns out that the hard-core limit
@Eq. ~26!# is well represented by values ofk.50, in the
sense that the statistics become independent ofk in this
range of parameters. All numerical results were obtained for
this regime.

In Fig. 8 we plot the average and the standard deviation of
e as a function ofTB /Etr for two values ofg. The fluctua-
tions of e increase withTB /Etr as expected. The variance is
larger, the larger the difference in lengths of the two rods,
i.e., the more inelastic the collisions are in the deterministic
limit. In general the distribution ofe is non-Gaussian, so that
it is not sufficient to consider the two lowest moments. In-
stead, the full information about the statistics ofe is con-
tained in the densitypEtr /TB

g (e2) ~which is also the relevant

quantity for energy transfer, cf. below!, shown in Fig. 9 to-
gether with the distribution function DEtr /TB

g (e2)

5*0
e2p(x)dx. As mentioned before, the distribution broadens

for increasingTB . In the deterministic limit the distri-
bution converges to a step-functionD`

g (e2)5Q(e22g2),
corresponding to a d function for the density
p`

g (e2)5d(e22g2).

VII. MESOSCOPIC DYNAMICS: INTERPRETATION
OF p„e2

… AS A TRANSITION PROBABILITY

In this section we interpret the results of the preceding
sections as a stochastic dynamics on a mesoscopic level: The
time evolution ofEtr upon successive collisions~cf. Sec. III!
is described as a Markov process andp(e2) is interpreted as
the transition probability between two ‘‘states’’Etr and
Etr8 . The basic ingredients of the mesoscopic dynamics are
the Markov assumption for the stochastic process and the
fast achievement of equipartition among the internal modes.

In detail, we proceed as follows. Led by the numerical
solution of the full dynamics~Sec. III! we regard the time
evolution of Etr as a stochastic process in discrete time
(1,2, . . . ,n)

Etr ~1!→Etr ~2!→•••→Etr ~n! ~27!

FIG. 8. The mean valuêe& ~triangles! and the standard devia-
tion De ~circles! as functions ofTB /Etr in the hard-core limit
(k5250). We consider two different length ratiosg. For each data
point 2500 realizations of the stochastic differential equation~16!
have been integrated.

FIG. 9. The probability densityp(e2) ~dotted line! and its inte-
gral, the distribution functionD(e2) ~full line!, for different energy
and length ratios:~a! Etr /Tbath510, g50.6173, ~b! Etr /Tbath
51, g50.6173, and~c! Etr /Tbath51, g50.2173.~d! displays the
distribution function for g50.6173 in the deterministic limit
k→`. Data were obtained from 8000 realizations ofW(t) with
k5100.

4834 54GÖTZ GIESE AND ANNETTE ZIPPELIUS



with each time step representing one collision. We assume
that this stochastic process is a Markov process, because sub-
sequent collisions are approximately independent~see Fig.
3!. The Markov assumption implies that the noise, which
models the effect of the internal oscillators, is chosen inde-
pendently after each collision.

Changes in the bath temperature are not independent, but
determined by energy conservation:

Etr ~ j11!5e~ j !
2 Etr ~ j ! , ~28!

TB~ j11!5TB~ j !1
12e~ j !

2

2Nmod
Etr ~ j ! .

The transition probability from a stateEtr before collision to
a stateEtr8 5e2Etr after collision is then determined by the
probability densitypEtr /TB

g (e2) according to

pTB~Etr→Etr8 !5
1

Etr
pEtr /TB

g ~e2!ue25E
tr8 /Etr

. ~29!

The stationary state of the Markov process is known: after
cooling, the system of two particles, each equipped with an
internal bath, evolves into a stationary state with a Boltz-
mann distribution forEtr ,

pT
B
0

stat
~Etr !5

1

TB
0 expS 2

Etr

TB
0 D ~30!

with the bath temperature

TB
05

Etot

2Nmod11
. ~31!

This implies for the transition rates of the Markov process

pT
B
0

stat
~E!5E

0

`

dE8pT
B
0~E8→E!pT

B
0

stat
~E8!. ~32!

Here we neglect changes in the bath temperature, which are
of O(1/Nmod) as compared toO(1) changes inEtr . A more
stringent constraint on the transition probabilities is the re-
quirement of detailed balance, i.e., equal probability currents
between two microstatesEtr andEtr8 ,

pT
B
0~Etr→Etr8 !pT

B
0

stat
~Etr !5pT

B
0~Etr8→Etr !pT

B
0

stat
~Etr8 !.

~33!

This implies for the transition probability density ofe2

pEtr /TB
0

g
~e2!

pe2Etr /TB
0

g S 1e2D
5

1

e2
expSEtr

TB
0 ~12e2! D . ~34!

We have checked the above considerations by a numerical
simulation of the Markov process. To simulate the transition
probabilities, which are not known analytically, we produce
a randome2 by solving the stochastic differential equation
for the momentary value ofEtr and a fixed equilibrium tem-
peratureTB

0 . The distribution ofEtr /TB
0 based on 10 000

steps in the Markov process is shown in Fig. 10. As ex-
pected, the distribution approximates a Boltzmann statistics
rather well. The statistics forp(e2) that we have obtained so
far is not sufficient to test detailed balance numerically, how-
ever.

Detailed balance is not enough to uniquely specify a tran-
sition probability. As for the dynamics of Ising spins, one
may construct many different transition probabilities, which
all satisfy detailed balance and hence relax to the same sta-
tionary state. In particular, Glauber’s choice@21# would cor-
respond to

pEtr /TB
~G! ~e2!5

Etr

TB
expS 2e2

Etr

TB
D . ~35!

However, this expression has the wrong deterministic limit

limEtr /TB→`pEtr /TB
~G! ~e2!5d~e2!. ~36!

Collisions, where the internal vibrations are not excited,
would be completely inelastic. It is an open question whether
detailed balance, together with the right deterministic limit,
uniquely specifies the transition probabilities.

Also we want to stress the following point: In contrast to
most Monte Carlo simulations we are not interested in the
stationary state, which is trivial, but rather in the cooling
dynamics. At present it is not clear at all how sensitive the
cooling dynamics is with respect to variations in the transi-
tion probabilities. However, our approach allows for a sys-
tematic investigation of this point. For that purpose it would
be helpful to have a simple analytical expression for the tran-
sition probabilities. Detailed balance and the deterministic
limit may serve as guidelines in the search of such approxi-
mations.

FIG. 10. Result of a simulation of the Markov process~27! in
the stationary state with fixedTB

0 . The transition densities
pT

B
0(Etr→Etr8 ) were simulated by numerical integration of Eq.~16!

with g50.6. The distribution functionD(e2) ~full line! is calcu-
lated from 10 000 simulation steps and compared with the Boltz-
mann distribution@dashed line, cf. Eq.~30!#.
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VIII. OUTLOOK

The stochastic dynamics of Sec. VII is easily generalized
to a dilute gas of many granular particles, each characterized
by its center-of-mass position and velocity and by the tem-
perature of its own bath. As long as the rods do not interact,
they move freely and integration of the equations of motion
is trivial. In particular, one can calculate the time of the next
collision, as is done in event-driven simulations. The colli-
sion event is then treated statistically, as discussed in Sec.
VII: For the colliding pair the kinetic energy and the tem-
peratures are updated with a randomly chosene2, whose
distribution is given byp(e2). This part of the dynamics
resembles a Monte Carlo procedure,p(e2) being interpreted
as the transition probability between two states. An interest-
ing open question is whether this algorithm is able to avoid
the inelastic collapse, which is observed in event-driven al-
gorithms. In this context dissipation of the internal vibrations
may become important. In the simplest model dissipation can
be taken into account by a time-dependent bath temperature,
as discussed in the Introduction. Work along these lines is in
progress.

One may also try to extend our analysis to higher dimen-
sional objects like disks or spheres. Frequently a quasistatic
potential due to Hertz is used for two colliding spheres.
However, in a real collision the quasistatic approximation is
not expected to hold. For the above example of two colliding
rods, the dynamic theory yields results that are completely
different from the static approximation. The latter implies
that the repulsive force depends linearly on the relative dis-
tance of the two rods. The dynamic theory, which is based on
the propagation of elastic waves inside the rods, predicts a
constant force during collision.
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APPENDIX A: DERIVATION OF THE STOCHASTIC
EQUATION „16…

Starting from the equations of motion~14! we integrate
the internal coordinates by means of the Green function for
harmonic oscillators:

qi
~n!~ t !5A2

m

mi
E
0

t

dt8
sinv i ,n~ t2t8!

v i ,n
R̈2,1~ t8!

1qi
~n!~0!cosv i ,nt1

pi
~n!~0!

miv i ,n
sinv int. ~A1!

Next we introduce a dimensionless time variablet5ct/ l
such that mass ratios are given by the corresponding wave
propagation times

mi

m
5G i ~A2!

and define the scaled center of mass distanceZ(t)
5aR2,1(t l /c) and the total displacement

U~t!5au2S 2
l 2
2
,
l

c
t D2au1S l 12 , lc t D5aA2(

i ,n
qi

~n! .

~A3!

If we denote derivatives with respect tot by primes and set
the arbitrary constantB5mc2/(a2l 2), the translational equa-
tion of motion reads

Z9~t!5e2~Z1U !, ~A4!

where

U~t!5(
i51

2 E
0

tds

p (
n

1

n
sinS 2pn

G i
~t2s! DZ9~s!1Q~t!.

~A5!

HereQ(t) corresponds to displacements that result from the
initial conditions@cf. Eq. ~17!#. We now use the identities

1

p (
n51

`
1

n
sin~2pnx!5 1

22x1 (
n51

`

u~x2n! for x>0

~A6!

@u(x) denotes the step function# and 1/G111/G251 and get
after integration by parts

U~t!5Z8~t!2Z8~0!1Z8~0!t2Z~t!1Z~0!

1 (
n51

`

u~t2nG i !@Z8~t2nG i !2Z8~0!#1Q~t!.

~A7!

After inserting Eq.~A7! into Eq. ~A4!, Z9(t) becomes inde-
pendent ofZ and we obtain thefirst-orderdifferential equa-
tion ~16! for the velocity increase

W~t![Z8~t!2Z8~0! ~A8!

@note thatZ(0)5aR0 andZ8(0)52k#.

APPENDIX B: DETERMINISTIC SOLUTION

In the following we consider Eq.~16! in the limit
Q(t)[0:

W8~t!5expH k~t2t f ree!2W~t!2(
i51

2

(
n51

`

W~t2nG i !J
~B1!

W~t!50 for t<0.

We confine ourselves to the case 0.5<g,1, i.e.,
G1,G2<2G1 and look for an approximate solution of Eq.
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~B1! that is correct up to terms of ordero(e2kd),d.0. As a
first step, the solution of~B1! withoutmemory terms is

W~t!; lnF11
1

k
ek~t2t f ree!G . ~B2!

Apparently, this solution decays exponentially fast for
t,t f ree and grows — essentially linearly int andk — for
t.t f ree . This means that all memory terms that are ob-
tained from Eq.~B2! at timessmaller thant f ree can be ne-
glected. Consequently,~B2! is a consistent solution of~B1!
in the entire time interval@0<t<t f ree1G12d#, whered is
small and positive. In the interval@t f ree2d,t f ree
12G12d# only two memory terms need to be considered,
each evaluated with the help of Eq.~B2!, so that we have to
solve the equation

W8~t!5
exp$k~t2t f ree!2W~t!%

F11
1

k
ek~t2G12t f ree!GF11

1

k
ek~t2G22t f ree!G

~B3!

with initial conditionW(t f ree2d);0. This equation can be
solved by elementary integration, yielding

eW~t!511ekG1F lnS 11r

11e2Dr D G
r ~t f ree2d!

r ~t!

1O~e2D!,

~B4!

whereD5k(G22G1) and

r ~s!5
1

k
ek~s2G12t f ree!. ~B5!

Neglecting the lower boundary term in Eq.~B4! we obtain
Eq. ~22!. For t,t f ree1G1 this solution differs from Eq.
~B2! only by exponentially small terms. Hence it is an ap-
proximate solution of Eq. ~B1! in the entire range
t,t f ree12G1. @If g,0.5 one has to replaceG2 in Eq. ~22!
by 2G1, whereas for the derivation of Eq.~21! only a single
memory term has to be considered.#

In order to prove that Eq.~22! also gives the correct be-
havior in the limitt→` one still has to show thatW8;0 for
t>t f ree12G1, i.e., that there is no relevant contribution to
W(t) from other memory terms. Again, this can be done
@18# by feeding the solution into the right-hand side of Eq.
~B1!.
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